支持向量机高斯核调参小结

在支持向量机(以下简称SVM)的核函数中,高斯核(以下简称RBF)是最常用的,从理论上讲, RBF一定不比线性核函数差,但是在实际应用中,却面临着几个重要的超参数的调优问题。如果调的不好,可能比线性核函数还要差。所以我们实际应用中,能用线性核函数得到较好效果的都会选择线性核函数。如果线性核不好,我们就需要使用RBF,在享受RBF对非线性数据的良好分类效果前,我们需要对主要的超参数进行选取。本文我们就对scikit-learn中 SVM RBF的调参做一个小结。……

阅读更多

集成学习之Adaboost算法原理小结

在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系。前者的代表算法就是是boosting系列算法。在boosting系列算法中, Adaboost是最著名的算法之一。Adaboost既可以用作分类,也可以用作回归。本文就对Adaboost算法做一个总结。……

阅读更多

 

最大熵模型原理小结

最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。……

阅读更多