深度贝叶斯自然语言处理

深度学习和贝叶斯的结合,以及如何在自然语言处理领域应用?本入门教程就介绍了NLP深度贝叶斯学习的最新研究进展,此类进展可应用于:语音识别、文本摘要、文本分类、文本分割、信息提取、图片标题生产、句子生成、对话控制、情感分类、推荐系统等问题中。从传统上说,“深度学习”被认为是一种学习的过程,其中的推理或优化环节,是通过real-valued deterministic模型实现的。从大型词表中提取出的单词、句子、实体、动作等语义结构,难以在数学或计算机程序中得到很好的表达。用于NLP的离散或连续隐变量模型中的“分布函数”可能无法被适当地分解或估计。

简单的贝叶斯学习是利用参数的先验分布,由样本信息求来的后验分布,直接求出总体分布。贝叶斯学习理论使用概率去表示所有形式的不确定性,通过概率规则来实现学习和推理过程。而深度学习强大的拟合能力可以很好的应用于贝叶斯学习,具体如何操作,请详看该资料~……

阅读更多

《PyTorch深度学习实战》(附代码及PDF下载)

深度学习目前最流行的框架是Tensorflow和PyTorch,市面上讲解Tensorflow的实战教材很多,但关于PyTorch的书却很少。今天给大家推荐一本2019年最新出炉的新书《PyTorch实战 – 一个解决问题的方法》。本书内容很新,由浅入深,全面讲解了如何基于PyTorch框架搭建深度学习模型,进行模型部署的方方面面,是一本不可多得的PyTorch入门书籍。……

阅读更多

TensorFlow、PyTorch 和 Keras 样例资源

TensorFlow、Keras和PyTorch是目前深度学习的主要框架,也是入门深度学习必须掌握的三大框架,但是官方文档相对内容较多,初学者往往无从下手。本人从github里搜到三个非常不错的学习资源,并对资源目录进行翻译,强烈建议初学者下载学习,这些资源包含了大量的代码示例(含数据集),个人认为,只要把以上资源运行一次,不懂的地方查官方文档,很快就能理解和运用这三大框架。……

阅读更多

CNN卷积神经网络如何处理一维时间序列数据?

许多文章都关注于二维卷积神经网络(2D CNN)的使用,特别是图像识别。而一维卷积神经网络(1D CNNs)只在一定程度上有所涉及,比如在自然语言处理(NLP)中的应用。目前很少有文章能够提供关于如何构造一维卷积神经网络来解决机器学习问题。……

阅读更多

深度学习开源框架对比

深度学习是一种基于对数据进行表证学习的机器学习方法,近些年不断发展并广受欢迎。

作为一个相对较新的概念,对于无论是想要进入该领域的初学者,还是已经熟知方法的老手来说,触手可及的学习资源太丰富了。

为了不被日新月异的技术和潮流所淘汰,积极参与深度学习社区中开源项目的学习和互动是个很好的方法。……

阅读更多

什么是深度学习?

第 1章 什么是深度学习
1.1 人工智能、机器学习与深度学习
1.2 深度学习之前:机器学习简史
1.3 为什么是深度学习,为什么是现在……

阅读更多

【python深度学习】目录

第 1章 什么是深度学习
第 2章 神经网络的数学基础.
第 3章 神经网络入门
第 4章 机器学习基础
第 5章 深度学习用于计算机视觉
第 6章 深度学习用于文本和序列
第 7章 高级的深度学习最佳实践
第 8章 生成式深度学习……

阅读更多