网盘地址:
链接: https://pan.baidu.com/s/1qCr07PCDxNTAlByYr2hkeg
提取码: ccyf
“可解释”是这本书的核心论题。作者Molnar认为,可解释性在机器学习甚至日常生活中都是相当重要的一个问题。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型可解释的人阅读本书。
可解释性是当下机器学习研究特点之一。最近,来自复旦大学的研究生朱明超,将《Interpretable Machine Learning》翻译成了中文。本文推介由朱明超同学亲自撰写。
这本书最初是由德国慕尼黑大学博士Christoph Molnar耗时两年完成的,长达250页,是仅有的一本系统介绍可解释性机器学习的书籍。
这本书最初是由Christoph Molnar耗时两年完成的《Interpretable Machine Learning》,长达250页,在公开至今该书得到密切关注,这是在可解释性领域可以找到的仅有的一本书。
网盘地址:
链接: https://pan.baidu.com/s/1qCr07PCDxNTAlByYr2hkeg
提取码: ccyf
“可解释”是这本书的核心论题。作者Molnar认为,可解释性在机器学习甚至日常生活中都是相当重要的一个问题。建议机器学习从业者、数据科学家、统计学家和任何对使机器学习模型可解释的人阅读本书。