使用jieba和sklearn实现中文文本tf idf的计算

Sklearn安装简介及入门示例。
定义模型:线性回归、朴素贝叶斯、决策树、支持向量机、k近邻算法

更多:Jieba

sklearn中文文档:
http://sklearn.apachecn.org

import jieba
import jieba.posseg as pseg
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import re

1 读取数据文件

数据爬取自新浪新闻,以”中美贸易战”为关键词,按照相关度搜索,爬取了搜索结果的前100页新闻的正文;

# 读取数据文件
sina_news = pd.read_excel(r"C:\Users\YHY\Desktop\sina_news_finally.xlsx")
sina_news.head(5)
标题来源内容时间阶段
0外交部回应”美对华贸易调查”:打贸易战只会双输海外网海外网8月14日电在14日的外交部例行记者会上,发言人华春莹就近日热点进行回应。相关内容如下…2017-08-140
1特朗普政府对华 “301条款战”一触即发,中美贸易战只会双输一财网针对美国总统特朗普将签署行政备忘录,对中国发起贸易调查一事,中国外交部发言人华春莹14日回应…2017-08-140
2特朗普欲对华发起301条款调查 专家:该做法已过时第一财经日报特朗普欲对华动用“301条款”被指“过时了”  冯迪凡郭丽琴  虚晃了两次之后,狼真的要…2017-08-140
3特朗普欲对华贸易战?美专家:将是美经济倒退参考消息原标题:特朗普欲开展对华贸易战?美专家:这将是美国经济的倒退资料图:美国总统特朗普新华社…2017-08-150
4美国对华301条款战一触即发 外交部:贸易战只会双输第一财经日报特朗普政府对华“301条款战”一触即发中美贸易战只会双输  冯迪凡  针对美国总统特朗普…2017-08-150
# 人为将文本分为6个阶段,标记为0-6
# 将每个阶段的文本拼接到一起,形成了六个period
period_1 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 0,"内容"]))
period_2 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 1,"内容"]))
period_3 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 2,"内容"]))
period_4 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 3,"内容"]))
period_5 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 4,"内容"]))
period_6 = " ".join(list(sina_news.loc[sina_news.loc[:,"阶段"] == 5,"内容"]))

2 文本分词处理

def get_cut_result(text, stopWordsPath):
    """
    实现效果: 输入一段文本,返回分词后,重新组成的文本(需要给出停用词的路径)
    input:  
        text: 一段由文本组成的字符串 
        stopWordPath: 停用词文件路径
    output: 
        cutted_concated: 分词后,重新组成的长字符串
    """
    # 导入停用词表
    line = open(stopWordsPath, 'r', encoding="utf8").readline()
    stopwords = line.split(",")
    
    # 构造数字、字母pat
    pat = re.compile("[a-z0-9A-Z]+")

    result = []
    seg_list_1 = jieba.cut(period_1, cut_all=True) # 使用jieba进行分词    
    for seg in seg_list_1:        # 对分词结束后获得的list重新拼接
        pat_find = re.search(pat, seg)
        if seg not in stopwords and pat_find is None:  # 过滤掉停词和全部是pat的词汇
            seg = ''.join(seg.split()) #  首先对空格进行处理
            if (seg != '' and seg != "\n" and seg != "\n\n") :
                result.append(seg)
        cutted_concated = " ".join(result)
    return cutted_concated

# 对上述的6个period进行分词
concate_1 = get_cut_result(period_1, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_2 = get_cut_result(period_2, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_3 = get_cut_result(period_3, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_4 = get_cut_result(period_4, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_5 = get_cut_result(period_5, r"C:\Users\YHY\Desktop\stopWord.txt")
concate_6 = get_cut_result(period_6, r"C:\Users\YHY\Desktop\stopWord.txt")
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\YHY\AppData\Local\Temp\jieba.cache
Loading model cost 1.006 seconds.
Prefix dict has been built succesfully.
---------------------------------------------------------------------------

3 计算和输出tf idf值

#ai8py.com
# 将分词的结果append到一个列表里,作为tf idf的输入
corpus = []
corpus.append(concate_1)
corpus.append(concate_2)
corpus.append(concate_3)
corpus.append(concate_4)
corpus.append(concate_5)
corpus.append(concate_6)
# 初始化一个CountVectorizer类
# 对corpus里的文本计算tf idf值
vectorizer = CountVectorizer()    
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))

word = vectorizer.get_feature_names() #所有文本的关键字
weight = tfidf.toarray()              #对应的tfidf矩阵
# 打印关键词的个数
print(len(word))     #关键词的个数
# 观察第一阶段的tf idf
weight[0]
# 将各个阶段的tf idf值、关键词等组合成一个字典
score_dict = {}
for i in range(len(corpus)):
    scores = weight[i]
    score_dict[str(i)] = {key:value for (key,value) in zip(scores,word)}
    # score_dict['0'] 这里的0表示的第几阶段
# 输出各个阶段tf idf值排名前n的关键词
# 第一阶段的前10个关键词
top_30 = sorted(score_dict["0"].keys(),reverse=True)[0:30]
for i in range(30):
    print(score_dict["0"][top_30[i]] + ":" + str(top_30[i]))

Sklearn简介

  自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了。scikit-learn简称sklearn,支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。
  sklearn是Scipy的扩展,建立在NumPy和matplotlib库的基础上。利用这几大模块的优势,可以大大提高机器学习的效率。
  sklearn拥有着完善的文档,上手容易,具有着丰富的API,在学术界颇受欢迎。sklearn已经封装了大量的机器学习算法,包括LIBSVM和LIBINEAR。同时sklearn内置了大量数据集,节省了获取和整理数据集的时间。

机器学习基础

  定义:针对经验E和一系列的任务T和一定表现的衡量P,如果随着经验E的积累,针对定义好的任务T可以提高表现P,就说明机器具有学习能力。

 sklearn安装

    sklearn目前的版本是0.17.1,可以使用pip安装。在安装时需要进行包依赖检查,具体有以下几个要求:

  • Python(>=2.6 or >=3.3)
  • NumPy(>=1.6.1)
  • SciPy(>=0.9)

    如果满足上述条件,就能使用pip进行安装了:

1 pip install -U scikit-learn

      当然,使用pip安装会比较麻烦,推荐使用Anaconda科学计算环境,里面已经内置了NumPy、SciPy、sklearn等模块,直接可用。或者使用conda进行包管理。conda安装与pip类似:

1  conda install scikit-learn

       安装完sklearn以后,可以检查以下版本:

1  >>> import sklearn
2  >>> sklearn.__version__
3  '0.17.1'

ML神器:sklearn的快速使用

  传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类。本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的。希望你看完这篇文章可以最为快速的开始你的学习任务。

1. 获取数据

1.1 导入sklearn数据集

  sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践能力,同时这个过程也可以加深你对理论知识的理解和把握。(这一步我也亟需加强,一起加油!^-^)

首先呢,要想使用sklearn中的数据集,必须导入datasets模块:

from sklearn import datasets

 下图中包含了大部分sklearn中数据集,调用方式也在图中给出,这里我们拿iris的数据来举个例子:

iris = datasets.load_iris() # 导入数据集
X = iris.data # 获得其特征向量
y = iris.target # 获得样本label

1.2 创建数据集

  你除了可以使用sklearn自带的数据集,还可以自己去创建训练样本,具体用法参见《Dataset loading utilities》,这里我们简单介绍一些,sklearn中的samples generator包含的大量创建样本数据的方法:

下面我们拿分类问题的样本生成器举例子:

from sklearn.datasets.samples_generator import make_classification

X, y = make_classification(n_samples=6, n_features=5, n_informative=2, 
    n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0, 
    random_state=20)

# n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
>>> for x_,y_ in zip(X,y):
    print(y_,end=': ')
    print(x_)

    
0: [-0.6600737  -0.0558978   0.82286793  1.1003977  -0.93493796]
1: [ 0.4113583   0.06249216 -0.90760075 -1.41296696  2.059838  ]
1: [ 1.52452016 -0.01867812  0.20900899  1.34422289 -1.61299022]
0: [-1.25725859  0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172  0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011  0.06754955 -1.02805579 -0.83132182  0.93286635]

2. 数据预处理

  数据预处理阶段是机器学习中不可缺少的一环,它会使得数据更加有效的被模型或者评估器识别。下面我们来看一下sklearn中有哪些平时我们常用的函数:

from sklearn import preprocessing

2.1 数据归一化

  为了使得训练数据的标准化规则与测试数据的标准化规则同步,preprocessing中提供了很多Scaler:

data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)

# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来

2.2 正则化(normalize

  当你想要计算两个样本的相似度时必不可少的一个操作,就是正则化。其思想是:首先求出样本的p-范数,然后该样本的所有元素都要除以该范数,这样最终使得每个样本的范数都为1。

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized                                      
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

 2.3 one-hot编码

  one-hot编码是一种对离散特征值的编码方式,在LR模型中常用到,用于给线性模型增加非线性能力。

data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()

3. 数据集拆分

  在得到训练数据集时,通常我们经常会把训练数据集进一步拆分成训练集和验证集,这样有助于我们模型参数的选取。

# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签

test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本

train_size: 同test_size

random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True)

返回
---
分割后的列表,长度=2*len(arrays), 
  (train-test split)
"""

4. 定义模型

  在这一步我们首先要分析自己数据的类型,搞清出你要用什么模型来做,然后我们就可以在sklearn中定义模型了。sklearn为所有模型提供了非常相似的接口,这样使得我们可以更加快速的熟悉所有模型的用法。在这之前我们先来看看模型的常用属性和功能:

# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)

# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc

 4.1 线性回归

from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False, 
    copy_X=True, n_jobs=1)
"""
参数
---
    fit_intercept:是否计算截距。False-模型没有截距
    normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
     n_jobs:指定线程数
"""

 4.2 逻辑回归LR

from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, 
    fit_intercept=True, intercept_scaling=1, class_weight=None, 
    random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, 
    verbose=0, warm_start=False, n_jobs=1)

"""参数
---
    penalty:使用指定正则化项(默认:l2)
    dual: n_samples > n_features取False(默认)
    C:正则化强度的反,值越小正则化强度越大
    n_jobs: 指定线程数
    random_state:随机数生成器
    fit_intercept: 是否需要常量
"""

 4.3 朴素贝叶斯算法NB

from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
    alpha:平滑参数
    fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
    class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
    binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""

 4.4 决策树DT

from sklearn import tree 
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None, 
    min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
    max_features=None, random_state=None, max_leaf_nodes=None, 
    min_impurity_decrease=0.0, min_impurity_split=None,
     class_weight=None, presort=False)
"""参数
---
    criterion :特征选择准则gini/entropy
    max_depth:树的最大深度,None-尽量下分
    min_samples_split:分裂内部节点,所需要的最小样本树
    min_samples_leaf:叶子节点所需要的最小样本数
    max_features: 寻找最优分割点时的最大特征数
    max_leaf_nodes:优先增长到最大叶子节点数
    min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""

4.5 支持向量机SVM

from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""参数
---
    C:误差项的惩罚参数C
    gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""

 4.6 k近邻算法KNN

from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
    n_neighbors: 使用邻居的数目
    n_jobs:并行任务数
"""

4.7 多层感知机(神经网络)

from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
    hidden_layer_sizes: 元祖
    activation:激活函数
    solver :优化算法{‘lbfgs’, ‘sgd’, ‘adam’}
    alpha:L2惩罚(正则化项)参数。
"""

5. 模型评估与选择篇

5.1 交叉验证

from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
    model:拟合数据的模型
    cv : k-fold
    scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""

5.2 检验曲线

  使用检验曲线,我们可以更加方便的改变模型参数,获取模型表现。

from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
    model:用于fit和predict的对象
    X, y: 训练集的特征和标签
    param_name:将被改变的参数的名字
    param_range: 参数的改变范围
    cv:k-fold
   
返回值
---
   train_score: 训练集得分(array)
    test_score: 验证集得分(array)
"""

例子

6. 保存模型

  最后,我们可以将我们训练好的model保存到本地,或者放到线上供用户使用,那么如何保存训练好的model呢?主要有下面两种方式:

6.1 保存为pickle文件

import pickle

# 保存模型
with open('model.pickle', 'wb') as f:
    pickle.dump(model, f)

# 读取模型
with open('model.pickle', 'rb') as f:
    model = pickle.load(f)
model.predict(X_test)

6.2 sklearn自带方法joblib

from sklearn.externals import joblib

# 保存模型
joblib.dump(model, 'model.pickle')

#载入模型
model = joblib.load('model.pickle')

发表评论

电子邮件地址不会被公开。 必填项已用*标注