《分布式机器学习:算法、理论与实践》PDF

《分布式机器学习:算法、理论与实践》旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向。

如果链接失效,请留言告知,或留下邮箱发给您。

20190524更新,有点上当嫌疑,这个是收费才能得到密码。
先保存下来,或者有人急需,一块钱,也不贵。
链接: https://pan.baidu.com/s/1UrJ90ANeEExnjl3kcfwvfg 提取码: 4nf6

《分布式机器学习:算法、理论与实践》旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向。

《分布式机器学习:算法、理论与实践》PDF,273页,带书签目录,文字可以复制。

人工智能和大数据时代,解决最有挑战性问题的主流方案是分布式机器学习!

《分布式机器学习:算法、理论与实践》共12章。第1章是绪论,向大家展示分布式机器学习这个领域的全景。第2章介绍机器学习的基础知识。第3章到第8章是本书的核心部分,向大家细致地讲解分布式机器学习的框架及其各个功能模块。其中第3章给出整个分布式机器学习框架的综述,而第4章到第8章则分别针对其中的数据与模型划分模块、单机优化模块、通信模块、数据与模型聚合模块加以介绍。接下来的三章是对前面内容的总结与升华。其中第9章介绍由分布式机器学习框架中不同选项所组合出来的各式各样的分布式机器学习算法,第10章讨论这些算法的理论性质,第11章则介绍几个主流的分布式机器学习系统(包括Spark MLlib 迭代式MapReduce系统,Multiverso参数服务器系统,TensorFlow数据流系统)。最后的第12章是全书的结语,在对全书内容进行简要总结之后,着重讨论分布式机器学习这个领域未来的发展方向。

《分布式机器学习:算法、理论与实践》基于微软亚洲研究院机器学习研究团队多年的研究成果和实践经验写成,既可以作为研究生从事分布式机器学习方向研究的参考文献,也可以作为人工智能从业者进行算法选择和系统设计的工具书。人工智能大潮中,市场上已有许多机器学习书籍,但是分布式机器学习的专门书籍还很少见。本书是希望学习和了解分布式机器学习的读者的福音。

发表评论

电子邮件地址不会被公开。 必填项已用*标注