Numpy 索引和切片

Python 中原生的数组就支持使用方括号([])进行索引和切片操作,Numpy 自然不会放过这个强大的特性。

更多关于:NumPy

目录
单个元素索引
切片支持
索引数组
布尔索引数组
结构化索引工具
给被索引的数组赋值

单个元素索引

1-D数组的单元素索引是人们期望的。它的工作原理与其他标准Python序列一样。它是从0开始的,并且接受负索引来从数组的结尾进行索引。

>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8

>>> x.resize(2,5) >>> x
array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) >>> x[1,3] 8 >>> x[1,-1] 9 >>> x[1][-1] 9

注意:使用切片不会复制内部数组数据,但也会生成原始数据的新视图。

关于reshape的具体用法,详见:Numpy 修炼之道 (7)—— 形状操作

索引数组

Numpy数组可以被其他数组索引。对于索引数组的所有情况,返回的是原始数据的副本,而不是一个获取切片的视图。

索引数组必须是整数类型。

>>> x = np.arange(10,1,-1)
>>> x
array([10,  9,  8,  7,  6,  5,  4,  3,  2])
>>> x[np.array([3, 3, 1, 8])]
array([7, 7, 9, 2])

使用索引数组来对被索引数组进行索引后,会生成一个与索引数组形状相同的新数组,只是这个新数组的值会用被索引数组中对应索引的值替代。

x[np.array([3, 3, 1, 8])]

布尔索引数组

使用(整数)索引列表时,需要提供要选择的索引列表,最后生成的结果形状与索引数组形状相同;但是在使用布尔索引时,布尔数组必须与要编制索引的数组的初始维度具有相同的形状。在最直接的情况下,布尔数组具有相同的形状:

>>> y
array([[ 0,  1,  2,  3,  4,  5,  6],
       [ 7,  8,  9, 10, 11, 12, 13],
       [14, 15, 16, 17, 18, 19, 20],
       [21, 22, 23, 24, 25, 26, 27],
       [28, 29, 30, 31, 32, 33, 34]])
>>> b = y > 20
>>> y[b]
array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])

与整数索引数组的情况不同,在布尔数组中,结果是1-D数组,其包含索引数组中的所有元素,对应于布尔数组中的所有真实元素。索引数组中的元素始终以行优先(C样式)顺序进行迭代和返回。结果也与y[np.nonzero(b)]相同。与索引数组一样,返回的是数据的副本,而不是一个获取切片的视图。

如果y比b的维数更高,则结果将是多维的。例如:

>>> b[:,5] # use a 1-D boolean whose first dim agrees with the first dim of y
array([False, False, False,  True,  True], dtype=bool)
>>> y[b[:,5]]
array([[21, 22, 23, 24, 25, 26, 27],
       [28, 29, 30, 31, 32, 33, 34]])

这里,从索引数组中选择第4和第5行,并组合以形成2-D数字组。

结构化索引工具

为了便于数组形状与表达式和赋值关系的匹配,可以在数组索引中使用np.newaxis对象来添加大小为1的新维。例如:

>>> y.shape
(5L, 7L)
>>> y[:,np.newaxis,:].shape
(5L, 1L, 7L)

注意,在数组中没有新的元素,只是维度增加。这可以方便地以一种方式组合两个数组,否则将需要明确重塑操作。例如

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> x[:,np.newaxis] + x[np.newaxis,:]
array([[0, 1, 2, 3, 4],
       [1, 2, 3, 4, 5],
       [2, 3, 4, 5, 6],
       [3, 4, 5, 6, 7],
       [4, 5, 6, 7, 8]])

省略语法(三个点)可以用于指示完全选择任何剩余的未指定维度。如果数组z的形状是(3,3,3,3),那么z[1,…,2]等效于z[1,:,:,2]。例如:

>>> z = np.arange(81).reshape(3,3,3,3)
>>> z[1,...,2]
array([[29, 32, 35],
       [38, 41, 44],
       [47, 50, 53]])
>>> z[1,:,:,2]
array([[29, 32, 35],
       [38, 41, 44],
       [47, 50, 53]])

squeeze() 方法可以去除多余的轴,即返回一个将所有长度为1的维度去除的新数组。

>>> a = np.arange(6)
>>> a.shape = (2,1,3)
>>> a
array([[[0, 1, 2]],

       [[3, 4, 5]]])
>>> a.squeeze().shape
(2L, 3L)

给被索引的数组赋值

可以使用单个索引,切片,索引和布尔数组来选择数组的子集来分配。分配给索引数组的值必须是形状一致的(相同的形状或可广播到索引产生的形状)。例如,允许为切片分配常量:

>>> x = np.arange(10)
>>> x[2:7] = 1

或正确大小的数组:

>>> x[2:7] = np.arange(5)

发表评论

电子邮件地址不会被公开。 必填项已用*标注