标签:神经网络
神经网络入门
深度学习的发展日新月异,从经典的深度网络(DNN、CNN、RNN)到GAN、强化学习。深度学习覆盖的应用场景越来越丰富。今天介绍的图神经网络是另一类深度学习方法。虽然,图神经网络也可以纳入深度学习的范畴,但它有着自己独特的应用场景和算法实现,对初学者并不算太友好。这里主要是对图神经网络做一个入门性质的介绍,梳理图神经网络中的一些核心点,方便后续的进一步深入研究。……
数据科学中的6个基本算法,掌握它们要学习哪些知识
如果想从事数据科学,但是又没有数学背景,那么有多少数学知识是做数据科学所必须的?
统计学是学习数据科学绕不开的一门数学基础课程,但数据科学也经常会涉及数学中的其他领域。
数据科学使用算法进行预测,这些算法称为机器学习算法,有数百种之多。有人总结了数据科学中最常用的6种算法,已经掌握它们分别需要哪些数学知识。……
CNN卷积神经网络如何处理一维时间序列数据?
许多文章都关注于二维卷积神经网络(2D CNN)的使用,特别是图像识别。而一维卷积神经网络(1D CNNs)只在一定程度上有所涉及,比如在自然语言处理(NLP)中的应用。目前很少有文章能够提供关于如何构造一维卷积神经网络来解决机器学习问题。……
使用jieba和sklearn实现中文文本tf idf的计算
Sklearn安装简介及入门示例。
定义模型:线性回归、朴素贝叶斯、决策树、支持向量机、k近邻算法……
TensorFlow实现卷积神经网络
我们人看到一幅图像,眨眼之间就知道图像中有什么,图像中的主体在干什么。但计算机不同,计算机看到的每一副图像都是一个数字矩阵。那我们怎么让计算机从一个个数字矩阵中得到有用的信息呢,比如边缘,角点?更甚一点,怎么让计算机理解图像呢?
对图像进行卷积,就是接近目标的第一步。……
Python神经网络hello world
共11行代码实现BP反向传播算法。……
反向传播神经网络与Python实现
反向传播(Back Propagation,BP)是误差反向传播的简称,这是一种用来训练人工神经网络的常见算法, 通常与最优化方法(如梯度下降法)结合使用…….
神经网络工作原理
现在谈人工智能已经绕不开“神经网络”这个词了。人造神经网络粗线条地模拟人脑,使得计算机能够从数据中学习。……
卷积神经网络的应用
卷积神经网络:
Classification:分类任务
Retrieval:检索推荐。
Detection:探测,分类,回归。
Segmentation:分割。……