卷积神经网络(CNN)前向传播算法
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。……
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。……
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结。在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP)……
在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。……
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结。……
反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称。由于多层前馈神经网络的训练经常采用误差反向传播算法,人们也常把多层前馈神经网络称为BP网络。……
反向传播(Back Propagation,BP)是误差反向传播的简称,这是一种用来训练人工神经网络的常见算法, 通常与最优化方法(如梯度下降法)结合使用…….