CNN卷积神经网络如何处理一维时间序列数据?

许多文章都关注于二维卷积神经网络(2D CNN)的使用,特别是图像识别。而一维卷积神经网络(1D CNNs)只在一定程度上有所涉及,比如在自然语言处理(NLP)中的应用。目前很少有文章能够提供关于如何构造一维卷积神经网络来解决机器学习问题。……

阅读更多

TensorFlow实现卷积神经网络

我们人看到一幅图像,眨眼之间就知道图像中有什么,图像中的主体在干什么。但计算机不同,计算机看到的每一副图像都是一个数字矩阵。那我们怎么让计算机从一个个数字矩阵中得到有用的信息呢,比如边缘,角点?更甚一点,怎么让计算机理解图像呢?
对图像进行卷积,就是接近目标的第一步。……

阅读更多

Python实现卷积神经网络

卷积神经网络与常规的神经网络十分相似,它们都由可以对权重和偏置进行学习的神经元构成。每个神经元接收一些输入,然后执行点积操作,再紧接一个可选的非线性函数。整个网络仍然表示为单可微分的评估函数,整个网络从一端输入原始图像像素,另一端输出类别的概率。其最后一层(全连接层)同样有损失函数,并且我们学习常规神经网络的方法和技巧在这里仍然奏效。

那么卷积神经网络的不同之处是什么?首先卷积网络很明确地假设所有输入都为图像,这就允许我们在结构中对明确的属性进行编码。这就使得前向函数的实现更加高效,并且极大的减少了网络中参数的数量。……

阅读更多