61. 支持向量机(线性模型)的图像展示

支持向量机学习方法,针对不同的情况,有由简至繁的不同模型:

线性可分支持向量机(linear support vector machine in linearly separable case):训练数据线性可分的情况下,通过硬间隔最大化(hard margin maximization),学习一个线性的分类器,即线性可分支持向量机(亦称作硬间隔支持向量机)。

线性支持向量机(linear support vector machine):训练数据近似线性可分的情况下,通过软间隔最大化(soft margin maximization),学习一个线性的分类器,称作线性支持向量机(又叫软间隔支持向量机)。

非线性支持向量机(non-linear support vector machine):训练数据线性不可分的情况下,通过使用核技巧(kernel trick)及软间隔最大化,学习非线性分类器,称作非线性支持向量机。……

阅读更多

 

强化学习(policygradient和actor-critic

强化学习(Policy Gradient,Actor Critic) 强化学习是通过奖惩的反馈来不断学习的,在Q-Learning,Sarsa和DQN中,都是学习到了价值函数或对价值函数的近似,然后根据价值来选择策略……

阅读更多

时间序列的深度学习模型(RNN和LSTM)

一、RNN(循环神经网络)
Recurrent Neural Networks(RNN)用于处理序列模型的问题,是一种对序列数据建模的神经网络。

1.RNN与一般NN的不同
传统NN每个样本输入、输出之间相互独立,不能处理很多情况。比如预测句子的下一个单词是什么,需要用到之前的信息。
……

阅读更多

 

深度学习(近年来流行的卷积神经网络)

LeNet (20世纪90年代):最早最出名的神经网络之一。
AlexNet(2012) – 2012年,Alex Krizhevsky(和其他人)发布了 AlexNet,它是提升了深度和广度版本的 LeNet,并在2012年以巨大优势赢得了 ImageNet 大规模视觉识别挑战赛(ILSVRC)。这是基于之前方法的重大突破,目前 CNN 的广泛应用都要归功于 AlexNet。
ZF Net(2013) – 2013年 ILSVRC 获奖者来自 Matthew Zeiler 和 Rob Fergus 的卷积网络。它被称为 ZFNet(Zeiler 和 Fergus Net 的简称)。它在 AlexNet 的基础上通过调整网络框架超参数对其进行了改进。
GoogLeNet(2014) – 2014年 ILSVRC 获奖者是 Google 的 Szegedy 等人的卷积网络。其主要贡献是开发了一个初始模块,该模块大大减少了网络中的参数数量(4M,而 AlexNet 有60M)。
VGGNet(2014) – 2014年 ILSVRC 亚军是名为 VGGNet 的网络。其主要贡献在于证明了网络深度(层数)是影响性能的关键因素。
ResNets(2015) – 何凯明(和其他人)开发的残差网络是2015年 ILSVRC 的冠军。ResNets 是迄今为止最先进的卷积神经网络模型,并且是大家在实践中使用卷积神经网络的默认选择(截至2016年5月)。
DenseNet(2016年8月) – 最近由黄高等人发表,密集连接卷积网络的每一层都以前馈方式直接连接到其他层。 DenseNet 已经在五项竞争激烈的对象识别基准测试任务中证明自己比之前最先进的框架有了显着的改进。……

阅读更多

深度学习的编程工具Tensorflow

TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。……

阅读更多

深度学习(卷积神经网络LENET)

Lenet 是一系列网络的合称,包括 Lenet1 – Lenet5,由 Yann LeCun 等人在 1990 年《Handwritten Digit Recognition with a Back-Propagation Network》中提出,是卷积神经网络的 HelloWorld。……

阅读更多

LSTM模型与前向反向传播算法

在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。……

阅读更多