LSTM模型与前向反向传播算法

在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。……

阅读更多

受限玻尔兹曼机(RBM)原理总结

在前面我们讲到了深度学习的两类神经网络模型的原理,第一类是前向的神经网络,即DNN和CNN。第二类是有反馈的神经网络,即RNN和LSTM。今天我们就总结下深度学习里的第三类神经网络模型:玻尔兹曼机。主要关注于这类模型中的受限玻尔兹曼机(Restricted Boltzmann Machine,以下简称RBM), RBM模型及其推广在工业界比如推荐系统中得到了广泛的应用。……

阅读更多

深度学习入门综述

这篇综述论文列举出了近年来深度学习的重要研究成果,从方法、架构,以及正则化、优化技术方面进行概述。机器之心认为,这篇综述对于刚入门的深度学习新手是一份不错的参考资料,在形成基本学术界图景、指导文献查找等方面都能提供帮助。

论文:Recent Advances in Deep Learning: An Overview……

阅读更多

《PyTorch深度学习实战》(附代码及PDF下载)

深度学习目前最流行的框架是Tensorflow和PyTorch,市面上讲解Tensorflow的实战教材很多,但关于PyTorch的书却很少。今天给大家推荐一本2019年最新出炉的新书《PyTorch实战 – 一个解决问题的方法》。本书内容很新,由浅入深,全面讲解了如何基于PyTorch框架搭建深度学习模型,进行模型部署的方方面面,是一本不可多得的PyTorch入门书籍。……

阅读更多

深度学习开源框架对比

深度学习是一种基于对数据进行表证学习的机器学习方法,近些年不断发展并广受欢迎。

作为一个相对较新的概念,对于无论是想要进入该领域的初学者,还是已经熟知方法的老手来说,触手可及的学习资源太丰富了。

为了不被日新月异的技术和潮流所淘汰,积极参与深度学习社区中开源项目的学习和互动是个很好的方法。……

阅读更多